Retrieving Subsurface Properties of Mars-Analog Glaciers with Drone-Based GPR
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1. Goals

« Investigate the detectability of supraglacial debris, glacial base,
and internal layering in terrestrial debris-covered glaciers using
a drone-based ground penetrating radar (DGPR)

» Compare the results of DGPR with surface-based GPR at
at multiple frequencies

» Validate the detection of subsurface reflectors with clutter
simulations

2. Background
Earth

Debris-covered glacial landform Sourdough Rock Glacier, Alaska
DEM from HIRISE and CTX Airborne photo by Eric Petersen
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+ Lobate debris aprons (LDAs) are debris-covered glacial
landforms at the mid-latitudes of Mars, formed in multiple
episodes during the Amazonian age [0.3 — 1 Ga] 4
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* The radar sounder SHARAD (15-25 MHz) onboard the Mars
Reconnaissance Orbiter (MRO) has confirmed that the bulk
composition of LDAs is nearly water ice !

« SHARAD hasn't directly resolved the supraglacial debris to ice
contact or near surface stratigraphy ©!

« On Earth, debris-covered
glaciers (DCGs) are

planetary analogs for LDAsé % é
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Model for the formation of Galena Creek Rock Glacier

3. Platform

Platform:
* Drone DJI Matrice 600 Pro
* GPR MALA Geodrone 80
* Impulse radar
« Center frequency: 80 MHz
+ Bandwidth: 40 MHz

Navigation:
+ Automated flight path
» Speed (1 m/s)
« Altitude (3 m—5 m)
+ Real-time terrain following
Total takeoff weight: 10 Kg

4. Supraglacial debris and bulk thickness

Surface-based GPR (50 MHz)
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Profiles at the toe of Sourdough Rock Glacier
We manually picked the following reflectors:
« Surface (first return)
« Debris/ice interface
+ Debris thickness calculated with a velocity of 0.1 m/ns
« Basal reflector

* Bulk thickness calculated with a velocity of 0.15 m/ns
*Velocity was retrieved with a common-midpoint (CMP) survey ©

5. Internal debris layering and clutter simulations
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. Clutter

The clutter simulator *°! used as input the digital elevation models (DEMs) aquired with drone photogrammetry (5 cm/px) ['"!

6. Conclusions

+ We successfully employed a DGPR platform to survey terrestrial
DCGs, resolving debris-ice contacts, internal glacier stratigraphy,

and total glacial thickness.

» The DGPR platform and our results over Martian analog ISRU targets

demonstrate the potential for drone-based planetary exploration.

7. Future work
Development of a drone-based chirped radar

« Test behaviour of current and future radars, with a frequency
between 10 MHz to 1.1 GHz

« Flight altitude ~120 m, mass < 5 kg.
« within the specifications of the Mars Science Helicopter 12
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